Search For Sub-Kilometre Sized Trans-Neptunian Objects Using CoRoT Asteroseismology N1 Data

<u>Chih-Yuan LIU^{1,2*}</u>, Alain DORESSOUNDIRAM², Françoise ROQUES², Hsiang-Kuang CHANG^{1,3}, Jie-Rou SHANG¹

> ¹Institute of Astronomy, National Tsing Hua University, Hsinchu, Taiwan ²LESIA, Observatoire de Paris, Meudon, France ³Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

[Cumulative KBO size distribution as a function of TNO radius]

FIRST TNO OCCULTATION EVENT!

Hubble detects smallest known Kuiper Belt Object

SCHLICHTING ET AL., NATURE (2009) 462, 895

HST/FGS (40-Hz; 1.2 × 10⁴ star hours) found an occultation by a body with an approximately 500-metre radius at a distance of 45 AU

CONVECTION, ROTATION & PLANETARY TRANSITS

sensitive to tiny variations of the light intensity from stars.

CNES - Octobre 2005/Illus, D. Ducros

The Fresnel Scale $F_s = (\lambda D/2)^{1/2}$								
For $\lambda = 550$ nm (Visible)								
D (AU)	F _s (m)							
43	1331.8							

- Launched on 2006 December 27,
- It was developed and is operated by the CNES
- It has a polar inertial circular orbit (90-degree inclination) at an altitude of 896 kilometers.
- The orbital period : <u>6184</u> seconds.

TABLE 1a		TABLE 1b					
Observing run duration	150 days	Observing run duration	20-30 days				
Number of stars	10	Number of stars	10				
Magnitude	between 6 and 9	Magnitude	between 6 and 9				
Number of observing runs	5	Number of observing runs	between 5 and 10				
Total number of targets	50	Total number of targets	between 50 and 100				
Spectral types	mostly A, F, G	Spectral types	all types				

COROT ASTEROSEISMOLOGY OBSERVATION PROPERTIES

Credit to http://smsc.cnes.fr/COROT/sismologie.htm

COROT AN1 DATA SETS (PART I)

Т	ABLE1: COF	ROT ASTEROSEISI	MOLOGY N1 DATA	EMPLOYED
SEGMENT	RUN CODE	DATE BEGIN	DATE END	ACCUMULATED OBSERVING TIME (HOURS)
1	IRa01	1/31/07 11:06 AM	4/2/07 7:12 AM	12455.77
2	SRc01	4/11/07 3:07 PM	5/9/07 7:13 AM	5799.25
3	LRc01	5/11/07 1:10 PM	10/14/07 11:59 PM	33460.73
4	LRa01	10/18/07 8:57 AM	3/3/08 9:49 AM	28665.71
5	SRa01	3/5/08 10:34 PM	3/31/08 7:43 AM	5422.20
6	SRa02	10/8/08 10:44 PM	11/12/08 8:29 AM	7450.72
7	LRa02	11/13/08 10:49 PM	3/11/09 10:31 AM	25137.60
8	LRc03	4/1/09 8:49 PM	7/2/09 3:53 AM	9813.25
9	LRa03	10/1/09 8:57 PM	3/1/10 8:37 AM	16203.11

TOTAL STAR HOURS

PROPERTIES OF DATA SETS

- Asteroseismology Level-1 data
- Time resolution == 1 Hz
- 165 light-curves from 79 stars
- Vmag: **4.8** ~ **9.5**
- S/N ~ 360 for a V=7.36 star (for a whole light-curve)
- Star sizes @ 43AU: 1.47 ~91.65 km
- Longest light-curve ~ 131.5 days
- Shortest light-curve ~ 411 seconds

Liu et al., MNRAS 446, 932–940 (2015)

DEVIATION METHOD

N°	RunCode	$\begin{array}{c} { m WinSize}^{\dagger} \ ({ m sec}) \end{array}$	MJD (day)	$\begin{array}{c} \text{Depth} \\ (\sigma) \end{array}$	FluxDrop (%)	StarID	V_{mag}	eta* (deg)	$\omega*$ (deg)	R_s^{\ddagger} (km)	$V_{rel} \ ({ m km/s})$	SNR	$R_{o_{geom}} \sharp (\mathrm{km})$
POE01	SRc01	20	54208.482227	-10.2	0.39	HD175272	7.40	+24.63	78.16	3.06	13.94	2613	0.29
POE02	LRc01	35	54244.415845	-7.8	0.16	HD181440	5.46	+21.05	52.05	4.55	21.36	4854	0.28
POE03	LRc01	25	54326.764120	-9.1	0.57	HD182198	7.94	+21.28	35.49	1.91	26.74	1601	0.38
POE04	LRc01	70	54352.408877	-6.6	0.16	HD181907	5.83	+21.61	56.98	15.39	19.73	4032	0.62
POE05	LRc01	30	54376.565587	-8.3	0.63	HD180642	8.27	+23.10	79.79	1.57	12.91	1326	0.25
POE06	LRa01	20	54408.387337	-9.3	1.01	HD49862	9.47	-24.06	64.85	1.08	17.67	921	0.31
POE07	LRa01	30	54472.189174	-8.4	0.76	HD49330	8.88	-22.13	22.36	1.12	29.96	1106	0.35
POE08	LRa01	20	54505.935521	-9.3	0.34	HD49294	7.00	-22.56	42.97	2.71	24.79	2703	0.34
POE09	LRa02	30	54785.312491	-8.1	0.39	HD51722	7.53	-27.14	57.70	2.73	21.08	2093	0.34
POE10	LRa02	50	54828.166559	-7.2	0.52	HD51722	7.53	-27.14	28.67	2.73	29.67	1388	0.46
POE11	LRc03	20	54953.297340	-10.2	1.00	HD169868	9.28	+16.76	56.66	1.70	18.62	1016	0.40
POE12	LRc03	20	54986.009771	-9.9	0.47	HD169751	8.37	+16.16	28.10	7.18	27.75	2131	0.68
POE13	LRc03	60	55011.518949	-6.7	0.22	HD169370	6.30	+16.23	16.30	15.62	29.99	3014	0.73
IEE01	IRa01	180	54143.848821	-6.4	1.79	HD50844	9.10	-23.80	44.46	1.30	24.60	356	0.54
IEE02	SRc01	20	54205.229091	-10.4	0.40	HD175272	7.40	+24.63	81.04	3.06	13.35	2632	0.28
IEE03	LRc01	180	54293.734927	-6.0	1.41	HD180642	8.27	+23.10	23.12	1.57	30.00	428	0.57
IEE04	LRc01	85	54310.990668	-6.5	1.40	HD180642	8.27	+23.10	27.53	1.57	29.09	461	0.56
IEE05	LRa03	180	55107.750660	-6.2	0.86	HD43587	5.70	-18.27	84.18	12.74	9.89	722	1.18
IEE06	LRa03	180	55110.305301	-6.2	0.56	HD43587	5.70	-18.27	81.79	12.74	10.33	1096	0.95
IEE07	LRa03	180	55110.810865	-6.5	2.01	HD43823	7.35	-18.85	81.68	12.56	10.62	323	1.78

 Table 2. 13 Possible Occultation Events and 7 Instrumental Effect Events

[†]The running-window sizes applied to the search for the events.

[‡]The radii projected at 43AU of the background stars.

^{\sharp}The smallest detectable radii projected at 43AU of the occultators.

 $\ast Ecliptic$ latitude and Opposition angle respectively.

*Ecliptic latitude and Opposition angle respectively.

[‡]The smallest detectable radii projected at 43AU of the occultators.

⁺The radii projected at 43AU of the background stars.

^TThe running-window sizes applied to the search for the events.

Liu et al., MNRAS 446, 932–940 (2015)

N°	$RW_{20_{sec}}$	$RW_{25_{sec}}$	$RW_{30_{sec}}$	$RW_{35_{sec}}$	$RW_{40_{sec}}$	$RW_{45_{sec}}$	$RW_{50_{sec}}$	$RW_{55_{sec}}$	$RW_{60_{sec}}$	$RW_{65_{sec}}$	$RW_{70_{sec}}$	$RW_{75_{sec}}$	$RW_{80_{sec}}$	$RW_{85_{sec}}$	$RW_{180_{sec}}$
POE01	*														
POE02				*											
POE03		*		January 2002000000000000000000000000000000000	******		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		unave 1,64201212.12.14 Manue 1212.14 Manue 1	#12+12+1.********************************	**2**2*********	##2##2##2##1/##########################	******	******	*2^\'\$\$\$\$\$\$\$\$\$\$\$\$\$
POE04			₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	<u></u>		******	******				*	*	*	*	11102(-2 ⁻² -1
POE05			*												
POE06	*	973mannossys#3973mana.	1.475.0437mm.101.075.0437mm.101.07247.0743				412#13#13#14412#141#1412#1412#1418#1410			#151121-15. ^{44,1} 8113112400-10-1.8123112400-10-1	#1311-24M-1-0-,#1311-24M-1-0-,#1311-24M-1-0-,	******	******	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
POE07	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	*	*	*									
POE08	*														
POE09			*												
POEI0 POEI1							*								
POEI1 POE12	*														
POE12 POE13	*														
10110									*						
IEE01															*
IEE02	*	*	*	*			*								
IEE03															*
IEE04														*	*
IEE05															*
IEE06															*
IEE07															*

Table 3. 15 Running Window Sizes

IEE07

IEE06

IEE05

TERON

Liu et al., MNRAS 446, 932–940 (2015)

Liu et al., MNRAS 446, 932–940 (2015)

CoRoT AN1 Data: Part II

(N0-N1 Pipeline Version 3.0)

COROT AN1 DATA	PART I	PART II	TOTAL
# 0F 1-SEC BINS	519869933	469411359	989281292
EXPOSURE (STAR HOURS)	144.4×10 ³	130.4×10 ³	274.8×10 ³
# OF RUNCODES	9	16	25
# OF AN1 LCS	165	188	353
BACKGROUND STARS	79	77	143
# OF POES / OUTLIERS	13 / 20	TBD / 12	TBD / 32

NewOUT#	RW _{20-9.3}	RW _{25-8.7}	RW _{30-7.9}	RW _{35-7.7}	RW _{40-7.2}	RW _{45-7.1}	RW _{50-7.0}	RW _{55-6.9}	RW _{60-6.7}	RW _{65-6.7}	RW _{70-6.6}	RW _{75-6.6}	RW _{80-6.6}	RW _{85-6.5}	RW _{180-6.2}
01	-9.4														
02	-10.1														
03	man a service of	-9.3	-9.4	-9.8	-10.4	-10.6	-10.9	-10.9	-10.9	-10.9	-11.0	-11.1	-11.1	-11.3	-11.6
04			-7.9												
05			-8.2		-7.6	-8.0									
06			-7.9												
07					-7.2	-7.1	-7.1			-6.7					
08					-7.2										
09						-7.1									
10						-7.4	-7.0								
11										-6.8	-7.0	-6.9	-6.6	-6.5	-7.0
12													-6.6	-6.7	-8.6

NewOUT#	RunCode	WinSize	MJD	Depth	Flux _{Drop}	StarID	V _{mag}	\$\beta\$	\$\omega\$	Ds	V _{rel}	SNR	D _{ogeom}
01	LRc05	20	55307.556956	-9.4	0.25	HD_170580	6.68	+27.28	69.78	5.73	17.22	3734	0.50
02	LRc02	20	54591.253796	-10.1	1.18	HD_170987	7.55	+29.96	59.44	6.86	21.38	862	1.31
03	LRc09	25	56097.031262	-9.3	1.61	HD_179192	8.29	+19.20	28.03	4.18	28.26	579	1.38
04	LRa05	30	55586.178264	-7.9	0.24	HD_42089	6.65	-15.91	35.78	22.56	25.69	3306	1.18
05	LRc09	30	56028.291574	-8.2	0.24	HD_178484	6.59	+20.06	86.77	31.63	10.43	3481	1.54
06	LRc02	30	54589.509375	-7.9	0.29	HD_171427	7.22	+29.61	61.28	17.79	20.68	2756	1.03
07	SRa05	40	55913.169838	-7.2	0.26	HD_48977	5.90	-14.37	21.39	5.56	28.91	2742	0.65
08	LRc09	40	56037.147037	-7.2	0.60	HD_179192	8.29	+19.20	79.17	4.18	11.36	1192	0.54
09	SRa04	45	55884.808542	-7.1	0.45	HD_45975	7.46	-27.91	48.55	3.32	24.32	1589	0.60
10	LRc05	45	55338.222072	-7.4	0.24	HD_170973	6.41	+26.85	45.29	5.53	25.08	3040	0.58
11	LRc02	65	54636.313993	-6.8	1.51	HD_171218	9.12	+29.65	31.49	3.45	29.57	449	1.24
12	SRa05	80	55911.660127	-6.6	2.54	HD_48752	8.36	-13.30	21.56	2.37	28.74	260	1.32

THANK YOU FOR YOUR ATTENTION!

ESTIMATION OF STELLAR ANGULAR RADIUS

StarName	Radius	Parallax	θ_{CoRoT}	$\theta_{Nordgren}$	Reference
	(R_{\odot})	(mas)	(mas)	(mas)	
HD46375	0.74	28.72	0.098923	0.138634	Mosser et al. 2013
HD49385	1.92	13.91	0.124311	0.130695	Mosser et al. 2013
HD49933	1.55	33.69	0.243060	0.232071	Mosser et al. 2013
HD52265	1.34	34.53	0.215368	0.209255	Mosser et al. 2013
HD175272	1.63	11.30	0.085733	0.097920	Ozel et al. 2013
HD175726	1.01	37.73	0.177373	0.179885	Bruntt 2009
HD181420	1.60	21.05	0.156766	0.157914	Ozel et al. 2013
HD181906	1.39	14.72	0.095236	0.103657	Bruntt 2009

The Barnes-Evans Relation: $F_{K_0} = 4.227 - 0.1K_0 - 0.5\log(2 \times \theta)$

The ERROR of the CoRoT results is ~ 15%

From the fitting of 57 NPOI giants, Nordgren(2002) found: $F_{K_0} = (3.942 \pm 0.006) - (0.095 \pm 0.007)(J_0 - K_0),$

Liu et al., MNRAS 446, 932–940 (2015)

Figure 2. The red curve is the deviation distribution of all COROT data bins by using the 20-sec running window. The green line is the linear fitting result from number of bins 1000 to 3. The bins on the left-hand side of the green line are potential outliers.

COROT 13 Possible Detections; ~144k star-hours data

Liu et al., MNRAS 446, 932–940 (2015)

COROT 13 Possible Detections; ~144k star-hours data

Figure 7. Same small KBO size distribution after 4.5 Gyr of collisional evolution as shown in Figure 6 but plotted with the corresponding differential powerlaw indices for the different segments of the size distribution. The deficit around 10 km results from an excess of ~ 1 km planetesimals at the onset of the collisional evolution. The size distribution for $R \leq 0.1$ km takes on the expected equilibrium value for material strength dominated bodies as calculated in Section 2.2. The size distribution above $R \sim 30$ km remains unchanged by collisional evolution over the age of the solar system and is therefore primordial.

Multi-object Instrument for Occultations in the SOlar system and TransitorY Systems

- CAHA 2.2m, 1.23m; OHP1.93m
- Time Resolution: 20 Hz
- Selected Stars:
 - \cdot V_{mag} = 9~11 ; AngSize \leq 2 F_S
 - near Opposition
- ~119 nights; (ExpTime $\ge 4.4 \times 10^{\prime}$ sec)

